Noncommutative Differential Geometry of Generalized Weyl Algebras
نویسنده
چکیده
Elements of noncommutative differential geometry of Z-graded generalized Weyl algebras A(p; q) over the ring of polynomials in two variables and their zero-degree subalgebras B(p; q), which themselves are generalized Weyl algebras over the ring of polynomials in one variable, are discussed. In particular, three classes of skew derivations of A(p; q) are constructed, and three-dimensional first-order differential calculi induced by these derivations are described. The associated integrals are computed and it is shown that the dimension of the integral space coincides with the order of the defining polynomial p(z). It is proven that the restriction of these first-order differential calculi to the calculi on B(p; q) is isomorphic to the direct sum of degree 2 and degree −2 components of A(p; q). A Dirac operator for B(p; q) is constructed from a (strong) connection with respect to this differential calculus on the (free) spinor bimodule defined as the direct sum of degree 1 and degree −1 components of A(p; q). The real structure of KO-dimension two for this Dirac operator is also described.
منابع مشابه
On Morita equivalence for simple Generalized Weyl algebras
We give a necessary condition for Morita equivalence of simple Generalized Weyl algebras of classical type. We propose a reformulation of Hodges’ result, which describes Morita equivalences in case the polynomial defining the Generalized Weyl algebra has degree 2, in terms of isomorphisms of quantum tori, inspired by similar considerations in noncommutative differential geometry. We study how f...
متن کاملStacks related to classical generalized Weyl algebras
Noncommutative rings arise naturally in many contexts. Given a commutative ring R and a nonabelian group G, the group ring R[G] is a noncommutative ring. The n × n matrices with entries in C, or more generally, the linear transformations of a vector space under composition form a noncommutative ring. Noncommutative rings also arise as differential operators. The ring of differential operators o...
متن کاملVyacheslav Futorny and Serge Ovsienko
We introduce a new class of noncommutative rings-Galois orders, realized as certain subrings of invariants in skew semigroup rings, and develop their structure theory. The class of Galois orders generalizes classical orders in noncommutative rings and contains many classical objects, such as the Generalized Weyl algebras, the universal enveloping algebra of the general linear Lie algebra, assoc...
متن کاملA note on power values of generalized derivation in prime ring and noncommutative Banach algebras
Let $R$ be a prime ring with extended centroid $C$, $H$ a generalized derivation of $R$ and $ngeq 1$ a fixed integer. In this paper we study the situations: (1) If $(H(xy))^n =(H(x))^n(H(y))^n$ for all $x,yin R$; (2) obtain some related result in case $R$ is a noncommutative Banach algebra and $H$ is continuous or spectrally bounded.
متن کاملLocally Finite Simple Weight Modules over Twisted Generalized Weyl Algebras
We present methods and explicit formulas for describing simple weight modules over twisted generalized Weyl algebras. When a certain commutative subalgebra is finitely generated over an algebraically closed field we obtain a classification of a class of locally finite simple weight modules as those induced from simple modules over a subalgebra isomorphic to a tensor product of noncommutative to...
متن کامل